Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tris(cis-2-hydroxycyclohexane-1,3,5-triaminium) hydrogen sulfate octachloride dihydrate

Christian Neis, Günter J. Merten and Kaspar Hegetschweiler*
Fachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041
Saarbrücken, Germany
Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

Received 27 April 2012; accepted 16 May 2012
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K} ;$ mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA ; \mathrm{H}-$ atom completeness 92%; disorder in main residue; R factor $=0.037 ; w R$ factor $=$ 0.101 ; data-to-parameter ratio $=14.9$.

The 2-hydroxycyclohexane-1,3,5-triaminium $\left(=\mathrm{H}_{3} L^{3+}\right)$ cation of the title compound, $3 \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{3+} \cdot 8 \mathrm{Cl}^{-} \cdot \mathrm{HSO}_{4}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, exhibits a cyclohexane chair with three equatorial ammonium groups and one axial hydroxy group in an all-cis configuration. The hydrogen sulfate anion and two water molecules lie on or in proximity to a threefold axis and are disordered. The crystal structure features $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Three C_{3}-symmetric motifs can be identified in the structure: (i) Two chloride ions (on the C_{3}-axis) together with three $\mathrm{H}_{3} L^{3+}$ cations constitute an $\left[\left(\mathrm{H}_{3} L\right)_{3} \mathrm{Cl}_{2}\right]^{7+}$ cage. (ii) The lipophilic $\mathrm{C}_{6} \mathrm{H}_{6}$-sides of three $\mathrm{H}_{3} L^{3+}$ cations, which are oriented directly towards the C_{3}-axis, generate a lipophilic void. The void is filled with the disordered water molecules and with the disordered part of the hydrogen sulfate ion. The hydrogen atoms of these disordered moieties were not located. (iii) Three $\mathrm{H}_{3} L^{3+}$ cations together with one HSO_{4}^{-} and three Cl^{-}counter-ions form an $\left[\left(\mathrm{HSO}_{4}\right)\left(\mathrm{H}_{3} L\right)_{3} \mathrm{Cl}_{3}\right]^{5+}$ cage. Looking along the C_{3}-axis, these three motifs are arranged in the order (cage 1) \cdots (lipophilic void) \cdots (cage 2). The crystal studied was found to be a racemic twin.

Related literature

The synthesis of a sulfate salt of $\mathrm{H}_{3} L^{3+}$ as well as metal complex formation of L has been reported by Merten et al. (2012). For the synthesis of a diastereomeric form of L, see: Castellanos et al. (1980). The hydrogen-bonding ability of axial versus equatorial hydroxy groups is discussed by Bonnet et al. (2005), and further examples in related structures are provided by Neis, Merten \& Hegetschweiler (2012) and Neis, Merten, Altenhofer \& Hegetschweiler (2012). Puckering parameters have been calculated according to Cremer \& Pople (1975). For the treatment of hydrogen atoms in SHELXL, see: Müller et al. (2006).

Experimental

Crystal data
$3 \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{3+} \cdot 8 \mathrm{Cl}^{-} \cdot \mathrm{HSO}_{4}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=861.40$
Trigonal, R3c
$a=12.6549$ (18) \AA
$c=43.616$ (9) A
$V=6049.2(17) \AA^{3}$

Data collection

Stoe IPDS image plate
diffractometer
14259 measured reflections
2518 independent reflections
2442 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.101$
$S=1.07$
2518 reflections
169 parameters
11 restraints
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.75 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack (1983), 1255 Friedel pairs
Flack parameter: 0.41 (7)

Table 1
Hydrogen-bond geometry (${ }^{\AA},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 11 \mathrm{~N} \cdots \mathrm{Cl} 4^{\text {i }}$	0.90 (2)	2.38 (2)	3.218 (3)	155 (4)
$\mathrm{N} 1-\mathrm{H} 12 \mathrm{~N} \cdots \mathrm{Cl} 2^{\text {ii }}$	0.90 (2)	2.36 (2)	3.241 (3)	166 (4)
$\mathrm{N} 1-\mathrm{H} 13 \mathrm{~N} \cdots \mathrm{Cl} 1^{\text {iii }}$	0.88 (2)	2.29 (2)	3.143 (3)	165 (4)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{Cl} 3$	0.82 (2)	2.28 (2)	3.092 (2)	170 (4)
N3-H31N \cdots Cl1	0.88 (2)	2.34 (2)	3.208 (3)	171 (4)
N3-H32N . . Cl $2^{\text {iv }}$	0.90 (2)	2.39 (2)	3.289 (3)	176 (4)
N3-H33N \cdots O11	0.90 (2)	2.35 (3)	3.072 (3)	137 (3)
$\mathrm{N} 3-\mathrm{H} 33 \mathrm{~N} \cdots \mathrm{Cl} 2$	0.90 (2)	2.74 (3)	3.361 (3)	127 (3)
N5-H51N . . $\mathrm{Cl}^{\text {v }}$	0.89 (2)	2.39 (3)	3.184 (3)	148 (4)
N5-H52N $\cdot \mathrm{Cl} 2^{\text {iii }}$	0.91 (2)	2.26 (2)	3.171 (3)	172 (4)
N5-H53N $\cdots \mathrm{Cl}^{\text {i }}$	0.88 (2)	2.32 (2)	3.194 (3)	171 (4)

Data collection: Stoe IPDS Software (Stoe \& Cie, 1997); cell refinement: Stoe IPDS Software; data reduction: Stoe IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

We thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2161).

References

Bonnet, A., Chisholm, J., Motherwell, W. D. S. \& Jones, W. (2005). CrystEngComm, 7, 71-75.
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Castellanos, L., Cleophax, J., Colas, C., Gero, S. D., Leboul, J., Mercier, D., Olesker, A., Rolland, A., Quiclet-Sire, B. \& Sepulchre, A.-M. (1980). Carbohydr. Res. 82, 283-301.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Merten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. \& Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31-35.
Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. \& Sawaya, M. R. (2006). Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.
Neis, C., Merten, G. J., Altenhofer, P. \& Hegetschweiler, K. (2012). Acta Cryst. E68, o1411-o1412.
Neis, C., Merten, G. J. \& Hegetschweiler, K. (2012). Acta Cryst. E68, o1425o1426.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1997). IPDS Software. Stoe \& Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2012). E68, o1899-o1900 [doi:10.1107/S1600536812022374]

Tris(cis-2-hydroxycyclohexane-1,3,5-triaminium) hydrogen sulfate octachloride dihydrate

Christian Neis, Günter J. Merten and Kaspar Hegetschweiler

Comment

All-cis-2-hydroxycyclohexane-1,3,5-triamine $(=L)$ has been prepared very recently in our laboratory for the first time by hydrogenation of picric acid (Merten et al., 2012). Due to its two distinct, facially coordinating metal binding sites (N, N, N versus N, O, N), it is an interesting chelating agent. A corresponding diastereomer with the hydroxy group in transposition has been known for many years (Castellanos et al., 1980).
In the crystal structure of the title compound, the cyclohexane ring of the $\mathrm{H}_{3} L^{3+}$ cation exhibits a chair conformation with the hydroxy group in axial and the three ammonium groups in equatorial position. Puckering parameters of the cyclohexane ring according to Cremer and Pople (1975) are $\mathrm{Q}=0.588 \AA, \theta=179.2^{\circ}, \varphi=182.4^{\circ}$. Due to the particular all-cis-configuration, the cation has an amphiphilic shape with a lipophilic $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and a hydrophilic $\left(\mathrm{OH}, \mathrm{NH}_{3}{ }^{+}\right)$side. It is noteworthy that the lipophilic side of $\mathrm{H}_{3} L^{3+}$ is directly oriented towards the C_{3}-axis, generating thus a lipophilic void with a trigonal geometry. This void is filled with a part of the hydrogen sulfate anion and the water of crystallization, both located either on, or close to, the threefold axis. The moieties within this void are all disordered (see the experimental refinement section). The crystal structure is basically made up by a complex net of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Additionally, the oxo oxygen atom O 11 of the $\mathrm{HSO}_{4}{ }^{-}$anion accepts three $\mathrm{H}(-\mathrm{N})$ hydrogen atoms, and the hydroxy group (O2) of the $\mathrm{H}_{3} L^{3+}$ cation donates its proton to Cl 3 . O 2 does, however, not act as an acceptor. A similar behaviour has recently been noted in related structures (Neis, Merten \& Hegetschweiler, 2012; Neis, Merten \& Altenhofer et al., 2012). It is well known that the ability of axial hydroxy groups for forming hydrogen bonds is restricted on steric grounds (Bonnet et al., 2005). Cl1 has a coordination number of four with a distorted tetrahedral geometry. Cl2 also accepts four $\mathrm{H}(-\mathrm{N})$ hydrogen atoms. However, if the $\mathrm{Cl} 2 \cdots \mathrm{O} 2 \mathrm{~W}$ distance of $3.225 \AA$ is interpreted in terms of an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond, the coordination number is five with a geometry intermediate between a trigonal bipyramid and a square pyramid ($\tau=0.43$). It must, however, be emphasized that O 2 W is only partially occupied and the hydrogen atom in consideration could not be located (see again the experimental refinement section). Cl 3 and Cl 4 (lying on the C_{3}-axis) have both a coordination number of three with a trigonal pyramidal geometry.
Viewing the structure along the threefold axis, three distinct structural motives can be recognized. (i) Cl 3 and Cl 4 together with three symmetry equivalent $\mathrm{H}_{3} L^{3+}$ cations constitute a $\left[\left(\mathrm{H}_{3} L\right)_{3} \mathrm{Cl}_{2}\right]^{7+}$ cage, where Cl 3 is hydrogen bonded to three hydroxy groups and Cl 4 is hydrogen bonded to three ammonium groups of the three cations. (ii) The lipophilic void, formed by the $\mathrm{C}_{6} \mathrm{H}_{6}$-sides of three $\mathrm{H}_{3} L^{3+}$ cations has already been mentioned. The three cations are interlinked by three Cl 2 ions via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonding. The disorder that is observed for the moieties within this void, is probably caused by the absence of suitable hydrophilic hydrogen acceptors. (iii) Three $\mathrm{H}_{3} L^{3+}$ cations together with a $\mathrm{HSO}_{4}{ }^{-}$and three Cl^{-}counter ions form a $\left[\left(\mathrm{H}_{3} L\right)_{3} \mathrm{Cl}_{3}\left(\mathrm{HSO}_{4}\right)\right]^{5+}$ cage with the Cl^{-}anions and three ammonium groups (N5) forming an almost planar, hydrogen bonded $\mathrm{N}_{3} \mathrm{H}_{6} \mathrm{Cl}_{3}$ ring. Looking along the C_{3}-axis, these three motives are arranged in
the order cage $1 \cdots$ lipophilic void \cdots cage $2 \cdots$.

Experimental

A hydrated sulfate salt $\left(\mathrm{H}_{3} L\right)_{2}\left(\mathrm{SO}_{4}\right)_{3} 5 \mathrm{H}_{2} \mathrm{O}$ has been prepared following the protocol given by Merten et al. (2012). ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta($ p.p.m. $)=1.92(\mathrm{q}, 2 \mathrm{H}), 2.25(\mathrm{td}, 2 \mathrm{H}), 3.51(\mathrm{tt}, 1 \mathrm{H}), 3.59(\mathrm{ddd}, 2 \mathrm{H}) 4.32(\mathrm{t}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta$ (p.p.m.) $=29.7,47.8,52.0,66.5$. Elemental analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{19} \mathrm{~S}_{3}(\%)$: C 21.36, H 6.87, N 12.46; found (\%): C 21.47 , H 6.13 , N 12.07. Single crystals were obtained from an aqueous solution of the sulfate salt which has been acidified with conc. hydrochloric acid to $\mathrm{pH}<1$. The solution was allowed to evaporate slowly at ambient conditions (295 K). Single crystals appeared after a period of several days.

Refinement

The $\mathrm{H}_{3} L^{3+}$ cation could be refined without problems, and its hydrogen atoms could all be located. They were treated as recommended by Müller et al. (2006): A riding model was used for $\mathrm{H}(-\mathrm{C})$ atoms. The positional parameters of the O and N -bonded H -atoms were refined using isotropic displacement parameters which were set to $1.5 \times U_{\text {eq }}$ of the pivot atom. In addition, restraints of 0.84 and $0.88 \AA$ were used for the $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances. A total of four chloride positions were located; two of them (Cl 3 and Cl 4) are placed on the threefold axis, adding up altogether to a total charge of -2.667. Moreover, an SO_{4} moiety was located on the three fold axis. Although a hydrogen atom could not be found in proximity to any of the sulfate oxygen atoms, charge balance considerations require that this moiety must be formulated as HSO_{4}^{-}(this is reasonable, if the acidic medium used for crystal growth is considered). In agreement with such an interpretation, two distinctly different $\mathrm{S}-\mathrm{O}$ bond lengths were observed. O11, lying again on a threefold axis, forms a short $\mathrm{S}=\mathrm{O}$ bond. O 12 , which forms a longer $\mathrm{S}-\mathrm{O}$ bond, lies, however, on a general position. It appears thus that the hydrogen atom of the HSO_{4}^{-}ion is distributed over three symmetry equivalent sites, and O 12 is occupied in a 33% : 66% ratio by a hydroxy and an oxo group, respectively. Such a disorder is also reflected by the relatively large displacement of O12. In proximity to the disordered hydrogen sulfate anion, two additional peaks, O1W and O2W, were localized and were interpreted as disordered water molecules. O1W was again located on the threefold axis, whereas O 2 W lies on a general position. The short O1W $\cdots \mathrm{O} 2 \mathrm{~W}$ interatomic distance of $2.46 \AA$ precludes a simultaneous occupation of both positions. The occupancies of O1W and O2W were therefore constrained to add up to a value of 100%. The refinement exhibited equal distribution of 50% each, indicating that either one water molecule on O 1 W or three water molecules on O 2 W are present, resulting in a $\mathrm{H}_{3} L^{3+}: \mathrm{H}_{2} \mathrm{O}$ ratio of $3: 2$. Due to this disorder, it was again not possible to locate any hydrogen atoms, and the relatively large displacement of O1W and O2W was refined isotropically. The Flack parameter (1255 Friedel pairs) refined to a value of 0.41 (7), indicating formation of an inversion-twin with roughly equal portions of the two domains. As a consequence, the TWIN option of SHELXL was used in the final refinement resulting in a marginal drop of wR2 from 10.3 to 10.1%. In agreement with the Flack parameter, the BASF parameter was found to be 41%.

Computing details

Data collection: Stoe IPDS Software (Stoe \& Cie, 1997); cell refinement: Stoe IPDS Software (Stoe \& Cie, 1997); data reduction: Stoe IPDS Software (Stoe \& Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

supplementary materials

Figure 1
Ellipsoid plot (50\% probability level) and numbering scheme of the title compound. Symmetry Codes: O12' $1-y, x-y, z$; O12" $1-x+y, 1-x, z$.

1a)

1b)

2a)

3a)

2b)

3b)

Figure 2

The three structural motives which are arranged along the threefold axis. (1) The $\left[\left(\mathrm{H}_{3} L\right)_{3} \mathrm{Cl}_{2}\right]^{7+}$ cage, (2) the lipophilic void generated by the $\mathrm{C}_{6} \mathrm{H}_{6}$-sides of three $\mathrm{H}_{3} L^{3+}$ cations together with the disordered moieties which are found within this void, (3) the $\left[\left(\mathrm{HSO}_{4}\right)\left(\mathrm{H}_{3} L\right)_{3} \mathrm{Cl}_{3}\right]^{5+}$ cage. All substituents of the $\mathrm{H}_{3} L^{3+}$ cation which are not essential have been omitted for clarity. (b) shows views along the threefold axis, (a) displays views for a perpendicular orientation. In 2 b) the three chloride anions which keep the three cations together are also shown. They are omitted in 2 a) for clarity.

Tris(cis-2-hydroxycyclohexane-1,3,5-triaminium) hydrogen sulfate octachloride dihydrate

Crystal data

$3 \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{3+} \cdot 8 \mathrm{Cl}^{-} \cdot \mathrm{HSO}_{4}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=861.40$
Trigonal, $R 3 c$
$a=12.6549$ (18) \AA

$$
\begin{aligned}
& c=43.616(9) \AA \\
& V=6049.2(17) \AA^{3} \\
& Z=6 \\
& F(000)=2724
\end{aligned}
$$

$D_{\mathrm{x}}=1.419 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5824 reflections
$\theta=3.3-38.0^{\circ}$

Data collection

Stoe IPDS image plate
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi scans
14259 measured reflections
2518 independent reflections
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Prism, colourless
$0.48 \times 0.40 \times 0.32 \mathrm{~mm}$

2442 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-14 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-52 \rightarrow 52$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0782 P)^{2}+1.7412 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.75 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}
Absolute structure: Flack (1983), 1255 Friedel pairs
Flack parameter: 0.41 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cl1	$0.25081(6)$	$0.28514(6)$	$0.523148(15)$	$0.02924(18)$	
C1	$0.2004(2)$	$0.3248(2)$	$0.40899(6)$	$0.0217(5)$	
H 1	0.2232	0.4124	0.4110	0.026^{*}	
N 1	$0.0651(2)$	$0.2485(2)$	$0.40665(6)$	$0.0260(5)$	
H 11 N	$0.049(4)$	$0.172(2)$	$0.4029(10)$	0.039^{*}	
H 12 N	$0.033(3)$	$0.264(4)$	$0.4234(7)$	0.039^{*}	
H 13 N	$0.037(4)$	$0.269(4)$	$0.3907(7)$	0.039^{*}	
C 2	$0.2434(2)$	$0.2867(2)$	$0.43791(6)$	$0.0201(5)$	
H 2	0.2079	0.3027	0.4566	0.024^{*}	
O2	$0.20562(18)$	$0.16022(19)$	$0.43620(4)$	$0.0257(4)$	
H 2 O	$0.153(3)$	$0.111(3)$	$0.4479(8)$	0.039^{*}	
C3	$0.3833(2)$	$0.3621(3)$	$0.43928(6)$	$0.0221(5)$	

H3	0.4084	0.4501	0.4418	0.027^{*}
N3	$0.4276(2)$	$0.3228(3)$	$0.46641(5)$	$0.0272(5)$
H31N	$0.382(3)$	$0.321(4)$	$0.4818(7)$	0.041^{*}
H32N	$0.418(4)$	$0.248(2)$	$0.4636(9)$	0.041^{*}
H33N	$0.5097(18)$	$0.365(3)$	$0.4673(10)$	0.041^{*}
C4	$0.4447(2)$	$0.3482(3)$	$0.41051(6)$	$0.0232(5)$
H4A	0.5343	0.4014	0.4121	0.08^{*}
H4B	0.4262	0.2627	0.4086	0.028^{*}
C5	$0.3974(3)$	$0.3838(2)$	$0.38230(6)$	$0.0224(5)$
H5	0.4231	0.4723	0.3836	0.027^{*}
N5	$0.4537(2)$	$0.3630(2)$	$0.35426(5)$	$0.0255(5)$
H51N	$0.5342(18)$	$0.413(3)$	$0.3532(9)$	0.038^{*}
H52N	$0.424(4)$	$0.373(4)$	$0.3361(6)$	0.038^{*}
H53N	$0.438(4)$	$0.287(2)$	$0.3530(9)$	0.038^{*}
C6	$0.2583(2)$	$0.3090(3)$	$0.37982(6)$	$0.0214(5)$
H6A	0.2323	0.2218	0.3769	0.026^{*}
H6B	0.2308	0.3365	0.3618	0.026^{*}
S1	0.6667	0.3333	$0.51658(4)$	$0.0494(4)$
O11	0.6667	0.3333	$0.48521(12)$	$0.0487(11)$
O12	$0.5574(4)$	$0.3375(4)$	$0.52786(9)$	$0.0796(11)$
C12	$0.65819(7)$	$0.61189(6)$	$0.460229(16)$	$0.03246(19)$
C13	0.0000	0.0000	$0.48180(3)$	$0.0243(3)$
C14	0.3333	0.6667	$0.53799(3)$	$0.0309(3)$
O1W	0.3333	0.6667	$0.4283(5)$	$0.113(6)^{*}$
O2W	$0.2408(13)$	$0.5251(14)$	$0.4717(3)$	$0.127(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0288(3)$	$0.0305(3)$	$0.0258(3)$	$0.0128(3)$	$-0.0011(3)$	$-0.0080(3)$
C1	$0.0228(13)$	$0.0266(13)$	$0.0200(12)$	$0.0155(11)$	$-0.0017(10)$	$-0.0011(10)$
N1	$0.0236(12)$	$0.0382(13)$	$0.0228(12)$	$0.0205(11)$	$0.0001(10)$	$0.0006(10)$
C2	$0.0195(12)$	$0.0250(13)$	$0.0157(12)$	$0.0111(11)$	$-0.0007(9)$	$-0.0012(9)$
O2	$0.0232(10)$	$0.0249(10)$	$0.0256(10)$	$0.0094(8)$	$0.0020(8)$	$0.0070(8)$
C3	$0.0224(13)$	$0.0241(13)$	$0.0164(12)$	$0.0090(11)$	$-0.0022(10)$	$-0.0020(10)$
N3	$0.0227(12)$	$0.0378(14)$	$0.0165(12)$	$0.0117(11)$	$-0.0040(9)$	$0.0008(10)$
C4	$0.0165(12)$	$0.0293(14)$	$0.0211(14)$	$0.0096(12)$	$0.0013(10)$	$0.0035(11)$
C5	$0.0253(13)$	$0.0216(12)$	$0.0184(12)$	$0.0103(11)$	$0.0051(10)$	$0.0041(10)$
N5	$0.0250(12)$	$0.0334(13)$	$0.0171(11)$	$0.0139(10)$	$0.0029(9)$	$0.0042(10)$
C6	$0.0213(12)$	$0.0262(13)$	$0.0167(12)$	$0.0119(11)$	$0.0011(9)$	$0.0039(10)$
S1	$0.0587(6)$	$0.0587(6)$	$0.0308(7)$	$0.0294(3)$	0.000	0.000
O11	$0.0493(17)$	$0.0493(17)$	$0.047(3)$	$0.0246(8)$	0.000	0.000
O12	$0.073(2)$	$0.085(3)$	$0.090(2)$	$0.046(2)$	$0.041(2)$	$0.003(2)$
C12	$0.0304(4)$	$0.0296(3)$	$0.0231(3)$	$0.0044(3)$	$-0.0005(3)$	$0.0005(3)$
C13	$0.0252(3)$	$0.0252(3)$	$0.0225(5)$	$0.01259(17)$	0.000	0.000
C14	$0.0292(4)$	$0.0292(4)$	$0.0343(6)$	$0.01459(19)$	0.000	0.000

Geometric parameters (A, ${ }^{\circ}$)

C1-N1	1.490 (3)	N3-H33N	0.901 (19)
C1-C6	1.530 (4)	C4-C5	1.531 (4)
C1-C2	1.543 (4)	C4-H4A	0.9900
C1-H1	1.0000	C4-H4B	0.9900
N1-H11N	0.896 (19)	C5-N5	1.504 (4)
N1-H12N	0.904 (19)	C5-C6	1.529 (4)
N1-H13N	0.875 (19)	C5-H5	1.0000
C2-O2	1.425 (3)	N5-H51N	0.893 (19)
C2-C3	1.536 (4)	N5-H52N	0.912 (19)
C2-H2	1.0000	N5-H53N	0.881 (19)
O2- H 2 O	0.823 (19)	C6-H6A	0.9900
C3-N3	1.497 (3)	C6-H6B	0.9900
C3-C4	1.531 (4)	S1-O11	1.368 (5)
C3-H3	1.0000	S1-O12 ${ }^{\text {i }}$	1.493 (3)
N3-H31N	0.876 (19)	$\mathrm{S} 1-\mathrm{O} 12^{\text {ii }}$	1.493 (3)
N3-H32N	0.901 (19)	S1-O12	1.493 (3)
N1-C1-C6	109.2 (2)	C5-C4-C3	109.2 (2)
N1-C1-C2	108.9 (2)	C5-C4-H4A	109.8
C6-C1-C2	111.8 (2)	C3-C4-H4A	109.8
N1-C1-H1	108.9	C5-C4-H4B	109.8
C6-C1-H1	108.9	C3-C4-H4B	109.8
C2-C1-H1	108.9	H4A-C4-H4B	108.3
C1-N1-H11N	106 (3)	N5-C5-C6	109.5 (2)
C1-N1-H12N	108 (3)	N5-C5-C4	108.2 (2)
H11N-N1-H12N	119 (4)	C6-C5-C4	111.9 (2)
C1-N1-H13N	112 (3)	N5-C5-H5	109.1
H11N-N1-H13N	105 (4)	C6-C5-H5	109.1
H12N-N1-H13N	107 (4)	C4-C5-H5	109.1
O2-C2-C3	109.6 (2)	C5-N5-H51N	113 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	109.6 (2)	C5-N5-H52N	114 (3)
C3-C2-C1	108.3 (2)	H51N-N5-H52N	105 (4)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2$	109.8	C5-N5-H53N	112 (3)
C3-C2-H2	109.8	H51N-N5-H53N	109 (4)
C1-C2-H2	109.8	H52N-N5-H53N	103 (4)
C2-O2-H2O	121 (3)	C5-C6-C1	109.8 (2)
N3-C3-C4	108.3 (2)	C5-C6-H6A	109.7
N3-C3-C2	109.3 (2)	C1-C6-H6A	109.7
C4-C3-C2	112.9 (2)	C5-C6-H6B	109.7
N3-C3-H3	108.7	C1-C6-H6B	109.7
C4-C3-H3	108.7	H6A-C6-H6B	108.2
C2-C3-H3	108.7	O11-S1-O12 ${ }^{\text {i }}$	109.24 (18)
C3-N3-H31N	105 (3)	O11-S1-O12 ${ }^{\text {ii }}$	109.24 (19)
C3-N3-H32N	111 (3)	O 12 C - $1-\mathrm{O} 12^{\mathrm{ii}}$	109.70 (18)
H31N-N3-H32N	110 (4)	O11-S1-O12	109.24 (18)
C3-N3-H33N	110 (3)	O12--S1-O12	109.70 (18)
H31N-N3-H33N	122 (4)	$\mathrm{O} 122^{\mathrm{ii}}-\mathrm{S} 1-\mathrm{O} 12$	109.70 (18)
H32N-N3-H33N	98 (4)		

supplementary materials

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$58.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$-62.7(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$177.6(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$56.8(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3$	$-58.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3$	$-177.5(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$62.7(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-56.8(3)$

$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.1(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$56.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 5$	$-177.0(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-56.3(3)$
$\mathrm{N} 5-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$177.2(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$57.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-57.7(3)$

Symmetry codes: (i) $-y+1, x-y, z$; (ii) $-x+y+1,-x+1, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 11 N \cdots \mathrm{Cl} 4^{\text {iii }}$	0.90 (2)	2.38 (2)	3.218 (3)	155 (4)
$\mathrm{N} 1-\mathrm{H} 12 \mathrm{~N} \cdots \mathrm{Cl} 2^{\text {iv }}$	0.90 (2)	2.36 (2)	3.241 (3)	166 (4)
$\mathrm{N} 1-\mathrm{H} 13 N \cdots{ }^{\circ}{ }^{\text {V }}$	0.88 (2)	2.29 (2)	3.143 (3)	165 (4)
$\mathrm{O} 2-\mathrm{H} 2 O \cdots \mathrm{Cl} 3$	0.82 (2)	2.28 (2)	3.092 (2)	170 (4)
N3—H31N $\cdots \mathrm{Cl} 1$	0.88 (2)	2.34 (2)	3.208 (3)	171 (4)
$\mathrm{N} 3-\mathrm{H} 32 N \cdots \mathrm{Cl} 2^{\text {i }}$	0.90 (2)	2.39 (2)	3.289 (3)	176 (4)
$\mathrm{N} 3-\mathrm{H} 33 N \cdots \mathrm{O} 11$	0.90 (2)	2.35 (3)	3.072 (3)	137 (3)
N3-H33N $\cdots \mathrm{Cl} 2$	0.90 (2)	2.74 (3)	3.361 (3)	127 (3)
N5-H51N \cdots Cl1 ${ }^{\text {vi }}$	0.89 (2)	2.39 (3)	3.184 (3)	148 (4)
N5-H52N $\cdots{ }^{\text {Cl2 }}{ }^{\text {v }}$	0.91 (2)	2.26 (2)	3.171 (3)	172 (4)
N5-H53N $\cdots \mathrm{Cl1} 1^{\text {iii }}$	0.88 (2)	2.32 (2)	3.194 (3)	171 (4)

Symmetry codes: (i) $-y+1, x-y, z$; (iii) $-y+2 / 3,-x+1 / 3, z-1 / 6$; (iv) $-x+y,-x+1, z$; (v) $x-1 / 3, x-y+1 / 3, z-1 / 6$; (vi) $-x+y+2 / 3, y+1 / 3, z-1 / 6$.

